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Fundamental equations of free convection in a compressible viscous heat-conducting 

fluid are derived. The difference between these and the equations for an incompressible 
fluid has been reduced to two dimensionless parameters with respect to which the tran- 

sitions to limit yield the Rayleigh and the Schwarzschild criteria. The problem is solved 

by the Bubnov-Galerkin method. Three characteristic parameters of length are derived 

from the fluid parameters, and the solution (the critical temperature gradient for convec- 
tion onset) is such that it is possible to indicate the criterion applicable to individual 

cases by comparing the height of the fluid layer with these parameters. 

1, The mechanical equilibrium of a nonuniformly heated fluid in a gravitational field 
to which heat is added below is steady, if the temperature gradient t~oughout its mass 
is constant and does not exceed a certain critical value fl]. If this condition is not satis- 

fied, internal motions (free convection) appear in the fluid, which tend to equalize the 
temperature throughout the fluid volume. 

Convective motion in the fluid is stimulated by its thermal expansion, while density 
variation due to hydrostatic pressure and dissipative processes taking place in a fluid in 

motion tend to return the fluid to its initial state. 
Usually the effect of one of these two factors on the conditions for convection onset 

is analyzed, leading to one of the two criteria, that of Rayleigh or of Schwarzschild. 
If isothermal convection, i.e. the density variation related to pressure variation AP = 

= pgl,, where 1, is the hight of the fluid layer expressed in terms of the thermal expan- 

sion 

can be neglected, the convection onset is determined by the Rayleigh number - a dimen- 

sionless combination of fluid parameters, viz. 
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where all parameters in the left-hand side of (1.2) have their usual meaning, and the 
number ‘rO for a flat layer of fluid is equal 657.5, 170’7.8 and 1100.65 in the cases of 
a fluid with two free, or two solid boundaries, or with the lower boundary solid and the 
upper free, respectively n]. 

The consideration of the other limit case where the viscosity and thermal conducti- 
vity are neglected, while the compressibility is taken into account, yields for the onset 
of convection the S chwarzschild criterion : 
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It would be obviously interesting to investigate the conditions for the occurrance of 

convection iI: a compressible viscous and heat conducting fluid, which in limit cases 
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would yield relationships (1.2) and (1.3). 
This problem was qualitatively analyzed in @I. Physical concepts help in certain 

cases to forecast the result, in others it is necessary to resort to quantitative calculations. 

Thus, for example, when AT/l, satisfies the lower of conditions (1.3) and condition (l.l), 
then, according to Schwarzschild, convection is bound to occur - compressibility cannot 

overcome thermal expansion, but it is not clear whether dissipation can arrest convec- 

tion, since the Rayleigh method does not apply to this case. 

The attempt made in [3] at a qualitative solution of this problem is unconvincing, 
owing to the special assumptions as regards the model and, also, because of the difficulty 

of comparing his results with experimental data. 
We shall determine the criterion of convection onset in a compressible viscous heat- 

conducting fluid by variational methods, and shall limit our analysis to a plane layer of 

fluid. 

Solution of the general problem of convection onset criterion may prove useful in 
investigations of certain problems of physics of the atmosphere and, also, of the behavior 
of a fluid close to its critical point, where there is a sharp increase of compressibility. 

The hydrodynamic equations for a compressible viscous heat-conducting fluid in a 
gravitational field are of the form 

g+(vV)v=--~+g+vAv+!-$+~)Vdivv, z+div(Pv)=O 

pT + (vV) S] = hAT’+ Q’ 2 
k 

(1.4) 

We separate the various thermodynamic parameters in (1.4) 

p=(p)+p,,+p’, p=pO+p’, T=<T)+T,+T’, <T)=coW (f’)=Cp;l;; 

where &,, T, and p. relate to the distribution of these along the height, prior to the onset 
of convection, in the presence of gravity and of a temperature gradient 

Vpo=(<P)+pa)g, VTa=A, $+- 

Finally, the presence of convection (v # 0 in (1.4)) leads to variation of pressure 

p’, temperature T’, and density p’ which are related by the equation of state 

P’ = - ((P) + PO) PT’ + @&_Kr p=- 
G&l G$l 

(1.7) 

Since in the following only the onset of convection will be considered, we shall line- 

arize Eqs. (1.4) with respect to small p’, T’ and p’. 

Substituting (1.5)-(1.7) into (1.4), we obtain for free convection in a compressible 
viscious heat-conducting fluid the equation (*) 

ar=-~~~p’-_T’+vA,v+(5+v/3)Vdivv 
at (P) + PO 

* ) Spigel and Veronis [4] had written these equations for a perfect gas, while Jeffreys [5] 
took compressibility into consideration in the equation of thermal conductivity only. 
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Here X= k 
(<P) + Pa) cp 

, L1= Ah 

Since according to (1.6) p0 = p,,(z) , and correspondingly 8 = 8(z), v = v(z) and 
X = x (z) , the coefficients in the system of Eqs. (1. 8) are, generally speaking, functions 
of the coordinates. Moreover, the derivatives (@/aT), and (+/ap)T also vary with 

height. These functional relationships are particularly significant in the presence of 

considerable inhomogeneities, such as exist in the critical region of a fluid. 

In the following the coefficients in Eqs. (1. 8) will be assumed constant. It follows 

from Eq. (l-6) that (for -L-J0 2( 1) p = (p> + po Z Cpj 
[ 

l _ LzlOz+ L1la z 1 (I.9 
10 G 

i. e. we neglect in (1. 8) function p(z) , and take into account only the first corrections 
with respect to LIZ, and L-Jo in the equation of free convection in an incompressible 

fluid. 
The solution of the system of nonstationary linear equations (1. 8) depend on time 

according to the law e -Lt If among acceptable values of o there is at least one such . 
that Imo>O, the stationary mode is unstable, with the instability occurring at Imo =O. 

It was shown in [6] that in the case of an incompressible fluid o is imaginary, hence the 
condition Imo = 0 reduces to o = 0. In the case of a compressible fluid considered 
here the assumption that o = 0 means that an increasing temperature gradient produces 

an initially stable convection. 

Eliminating pressure and horizontal velocity components from Eqs. (1 8) and assuming 
(by virtue of the problem unboundedness in the horizontal direction) that the dependence 

on horizontal coordinates is of the form cikr, where k is the two-dimensional wave vec- 

tor in the ty-plane, we obtain for the amplitude of vertical velocity vZ = f(z) and tem- 
perature T’ s Z(Z) at o = 0 the equations 

DZ + l&D ; + lo?& (Lr - L,) D + ls”Lz (L2 - LI) ($ + +) k%} f .==q k2r 

Dd$-ka 
(1.10) 

Dt = - (1 -a) f, 

(in terms of units : the layer height I, for length, lo-r for the wave vector, xl,-’ for 

velocity, and AZ,for temperature) 
Boundary conditions for Eqs (1.10) depend on whether the fluid layer is bounded by 

solid surfaces, or its surface is free Let us assume that the two surfaces bounding the 

fluid are solid, then the boundary conditions for Eqs. (1.10) are of the form (the coordi- 
nate origin is in the middle plane) 

f =df=?=O 
dZ 

for z= *r/z (1.11) 

Equations (1.10) contain ooth criteria of convection onset - that of Schwarzschild 

(1.3). and that of Rayleigh (1.2). In fact, if in the heat conduction equation only com- 
pressibility is taken into consideration. while viscosity and thermal conductivity are 
neglected, the condition VS = 0 , or in accordance with (1.8) a = 1 (for o = 0) repre- 
sents exactly the Schwarzschild criterion (1. 3) 
To obtain the second limit case, that of the Rayleigh criterion, it is necessary to disregard 

compressibility in Eqs. (1.8), i. e to assume ZoL2 < 1, and, also, the terms containing 1;1 
in the first two of Eqs. (1. 8), since thermal expansion is usually taken into account only 
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in the “driving power of convection” - gp?” in (1.8). Then for a stationary motion 
Eqs. (1.10) take the usual (for an incompressible fluid) form 

Dtf _ ATo k’z, Dr=--j (1.12) 

with the previously defined boundary conditions (1.11). 

From Eqs. (1.12) we readily obtain one sixth-order equation with the Rayleigh num- 
ber r as its eigenvalue, and parameter k. Function 7 = 7 (k) is defined by the boundary 
conditions, and its minimum value represents the criterion of instability onset with the 

periodicity k,’ in the horizontal plane as the minimizing factor. We thus obtain the 

Rayleigh criterion (1.2) for an incompressible fluid. 

2, In the case of a compressible fluid the system of Eqs. (1.10) is very cumbersome, 
since it depends on several parameters, This not only makes an analytical solution im- 

possible, but also presents considerable difficulties in the derivation of a numerical one. 
Because of this, we follow [7] and use the Bubnov-Galerkin method for deriving an 

approximate solution of the problem of stability of a nonuniformly heated fluid. 

Equations (1.10) differ for (1.12) by two additional parameters 41, and L,1, which 
characterize the thermal expansion and the compressibility of the fluid. Therefore the 

eigenvalue of the problem- the critical temperature gradient is now a function of three 

dimensionlesg parameters: k, LIZ,, and L,Z,, and, also, of the ratio of specific heats 
c,lcP and of the shear and dilatational viscosities &/Y. All of these parameters will, 

obviously, appear in the function r (k) we are interested in. 
We approximate the vertical velocity amplitude f(z) in accordance with the boundary 

conditions (1.11) by the following system of even orthogonal functions (*) : 

f{;] = cc,f,(l) + c& (1) + . . . = a,(l + CosZxz) + cl2 (1 + Cot36 nz) + . . . (2.1) 

where a,, c+.. are constant coefficients which are determined from a system of alge- 

braic equations by the Bubnov-Galerkin method. 
Calculations were also carried out with an approximation function of the form 

j’,“’ = a,j,i?) -t_ G# + . . . = a,(1 - 4292 f CL? (I- ‘122)222 +- . . . (2.2) 

Substituting (2. l), or (A. ‘L) into the second of Eqs. (1. lo), we obtain the temperature 
distribution z (z) defined by coefficients zl, ~1~ . . . and the form of function; f (z). 

To determine coefficients ai and the eigenvalues of the problem by tile Bubnov-Galer- 

kin method it is necessary to substitute T(Z) into the first of Eqs. (1. lo), multiply it by 

fi(z) , and integrate with respect io z. 

*) From the exact solution of the problem of an incompressible fluid follows that with 

increasing temperature gradient even perturbations are first realized, i. e. these are pre- 
cisely the ones which determine the disruption of stability.We assume that the stability 
disruption is determined by perturbations (2.1) and (2.3) even with respect to z , also 
when taking compressibility into consideration, despite of Eq. (1.10) containing the term 
1,L,Ud(...),‘alz which is odd with respect to z . However the structure of this term 

1 ‘!z 

c 
(Fllol.~ll .g cpzdz = - 

s 

d 
cp&L1D - (p& 

ds 
__‘I -‘/A 

where ~1 and qZ are, respectively, odd and even functions, is such that it vanishes for 
both even and odd trial functions, when the method of variation is used. 
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As the result we obtain for the coefficients ai the homogeneous linear set of equations 
2 ‘in fi, (Lfk - Ttk) dz = 0, T _ P&o4 A - - 

YX 
(i=1,2) (2.3) 

Here Lf is the left-hand side part of the first of Eqs. (1.10). 
The condition of solvability of the system of Eqs. (2.3) is the vanishing of the deter- 

minant, and this provides the equation for the determination of the problem eigenvalues 

T1r4 ('). 

Proceeding in accordance with the described general method, we obtain equation 

A13g20r (1 - a) 
WC 

-~o(k)-~rl(k)Lz(LL-L1)~o*=O (2.4) 

Here for function t) in (2.1) 

To(k) = N-‘(&I’ + 4naka + 8&k’), r,(k) = ‘/,N-‘[4na + 3(F/v + ‘lsW1 

N=l- (ks~;nP~t~+&-& 
and for function r,“) in (2.2) 

To(k) = E-‘k“(k’ + 24k’ + 504). y,(k) = E-lkg 112 + (t$’ + ‘/s)kY 

E = k6 (k* - 12k2 + 504) + 5040 (12+ k2)[6k - (12 + k2) th %kl 

To determine the critical gradient of temperature, which is the eigenvalue of our prob- 

lem, it would be necessary to minimize expression (2.4) with respect to k with fixed 

remaining parameters and consider (2.4) as an implicit function of A and k 

aFlak 
F(A,k)=O, +=-- 

aF/aA 

However this procedure, after the determination of k,(A) and its substitution into func- 

tion F(A, k) , would result in a very cumbersome expression for A,. 

For this reason we minimize (2.4) approximately with respect to k by separate mini- 

mization of functions ‘f,(k) and Tl(k). This does not lead to any substantial error in the 

determination of A,, since k,, and ko2 which minimize To(k) and r,(k) are close to each 

other, and functions To(k) and r,(k) virtually coincide for k = kol and k = ko2 (**). 

* ) To check the applicability of the Bubnov-Galerkin method to the Rayleigh problem, 
the critical Rayleigh number was calculated for an incompressible fluid, and the results 

were compared with those of the known exact solution. It was. found that for the function 

r(:’ in (2.1) ye = 1802 (with the minimizing k, = 3.1); for the sum a$) + a&) , 7. = 
= 1712 (k, = 3.05), and for function r,‘) in (2.2) and the sum o$) + c&t) .ro = 1707.8 

(k, = 3.1). All these results are very close to the exact solution r. = 1707.8. However 
an unfortunate choice of the approximating function, e. g. jr) in (2.2) yieldsTo Z=Z 3.10’ 

(k, = 6), differing considerably from the exact solution, i.e. such a velocity profile is 

not dangerous as regards the disruption of stability. 
* *) Thus for function fi’) in (2.1) we have: k,, = 3.1, and the minimum of function r, 
is To(kol) = 1802 with Tl(kol) = 74.1); k,,= 2.8 and yl(kos) = 73.4 (with ro(k& = 1837). 
The corresponding values for function fi2) in (2.2) are : 

k,, = 3.1, ro(ko,) = 1707.8, y,(k,,) = 70.5 

k,, = 3.8, To(k,,) = 1736, r,(k,,) = 69.2 
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In the following we shall assume k, = 3.1 , ra(k,) z 1700 and ~~(k,,) z 70. (c/v =I 
was assumed for simplicity). 

It is convenient to write the solution of Eq. (2.4) for the dimensionless temperature 
gradient T* in the form: 

r* = y. (2 + lo14 + ZolW) (1 + w20?j-l, .,s* = Wo44 
VX 

(2.5) 

Zo1= ZO/Zl, Z11= la/G, Z,, = Zs/Zr etc. 

where in addition to the numbers To = 1700 and ‘rr = 70 we have introduced three 

dimensions of length constructed from parameters of the problem 

Obviously Z, > 1, with the equality sign applicable for c,,lcP < 1. 
Depending on the fluid parameters three fundamental cases may occur : (1) I, < 1, < 

Q I,; (2) I, < Z1 < ZZ, and, finally, (3) Z3 < I, < I, (for (1 - c&J eg 1). 

For a given distance lo between the planes the criterion of convection onset will vary 
depending on the parameters of the fluid (cases 1-3) and, also, on the relationship between 
length 1, and parameters Z,, 1, and Zs. 

We pass to numerical estimates, and will consider the cases of a “typical” fluid away 
from the critical point. Assuming 

dP c j JjT 

= lo-lo see 
cm”’ 

v=X=iO-@ 1 
SW 

-5 = IO-S, g=lf..P cm 
CP se? 

(2.7) 

we then obtain 
I, = 2.5.10-8cm, 1, = 2~1, 2, = 10cm 

Let us consider the case of I, < 1, < II correspnding to (2.7). Since the analysis of 
the various possibilities resulting from (2.6) is quite simple, we shall adduce the final 

results only. 
Six possible areas to be distinguisi!eC for the distance Z,, between planes. The criteria 

of convection onset are of the following form: 

Zo <Z&a? (2.8.1) 

M312 <lo < 12 (2.8.2) 

(2.8.3) 

z3< lo< 4 

‘r* = -fa(f -!- Zo,’ + ZolaZzla) = 70 + relol' + ~lz02g2(ddd~)T' 

4~ k 44, 

r* = TO~Ol'f To 

1" > 442 

7. = ~&?I’ + T0~0,~~~,1 = To1,14 t ~llOgk?(d~~d~) Ta 

(2.8.4) 

(2.8.5) 

(2.8.6) 
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The numerical estimates (2.7) show that for the “typical” fluid considered here of 
practical interest are areas 1, < Z,< Zr and 11< 1,. In these cases (2.8.3-2.8.5) the 
critical gradient is equal to the sum of the Rayleigh temperature gradient r. and of that 
of Schwarzschild ‘f,, Z,r* . These are, obviously, limit cases with respect to parameter 
I,,4 5 1. (Formulas (2.8.3, 2.8.4) contain. also, the first correction factors). We note 

that Sorokin @] had derived on the basis of a qualitative analysis the criterion 23 5 1 

which coincides with the one obtained here for (1 3 c,/cp) z 1 only. 
We note that the estimates (2.7) of the problem parameters are “typical”. For a high- 

ly viscous heat-conducting fluid parameter 1, may increase to such an extent that it 

becomes expedient to consider area (2) where corrections to the Rayleigh criterion are 
proportional to E,-2, and generally speaking, also, area (1) in which appears a new crite- 
rion of convection onset - the critical gradient of temperature which is no longer pro- 
portional to Z0-4, as in the Rayleigh problem for an incompressible fluid, but to IO-~. The 
corrections to the Schwarzschild criterion for area (6) are of a distinctive kind. 

The more “exotic” cases of Z, g I, < I, and Z, < I, < I, in relationship (2.5) can 

be investigated in the same manner. 
The application of the derived formulas in the analysis of singularities of convection 

in proximity to the critical point will be given in separate paper. 

The authors express their thanks to G, Z. Gershuni and E. M. Zhukhovitskii for discus- 
sing a number of questions of the theory of free convection. 
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